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Summary

We present the development and validation of an efficient numerical wave tank (NWT)
solving fully nonlinear potential flow (FNPF) equations. This approach is based on a
variation of the 3D-MII (mid-interval interpolation) boundary element method (BEM),
with mixed Eulerian-Lagrangian (MEL) explicit time integration, of Grilli et al., which
has been successful at modeling many phenomena, including landslide-generated tsunami,
rogue waves, and the initiation of wave breaking over slopes. The MEL time integration
is based on a second-order Taylor series expansion, requiring to compute high order time
and space derivatives. In order to solve wave-structure interaction problems with complex
geometries, we reformulate the model to use a 3D unstructured triangular mesh, building
on earlier work, but presently only working with linear elements. The added flexibility
of arbitrary meshes is demonstrated by modeling the longitudinal forces on a trunca-
ted (surface-piercing) vertical cylinder, comparing to theory and experiment. In order to
improve the computational efficiency of the BEM, we apply the fast multipole method
(FMM), in the context of the new unstructured mesh. A detailed study of the resulting
computational time shows both the efficiency of the earlier 3D-MII approach and the
proposed one, and also what is necessary to scale such results up to larger grids.

I – Introduction

Potential flow theory, which assumes irrotational (and thus inviscid) flows, has been
very successful for modeling non-breaking water waves and wave-structure interactions,
and is a standard tool in ocean engineering. Generally, at a given resolution, potential flow
models have much less artificial dissipation than Navier-Stokes models, resulting in fas-
ter and more accurate results. Typically, in potential flow models, the boundary element
method (BEM) is used to compute the solution for flows around ships and offshore struc-
tures. Numerous industrial wave models have been developed under this assumption, e.g.,
WAMIT [26], AQUAPLUS [5], and AEGIR [24]. Current numerical wave tanks (NWTs)
based on the BEM have relatively similar approaches, as reviewed by Tanizawa [37]. The
time-domain solution of fully nonlinear potential flow (FNPF) equations, however, re-
quires solving an elliptic problem (Laplace’s equation) with the BEM at each time step,
which represents the biggest limitation of the method in terms of computational time,
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even for moderately large grids ; this is by contrast with standard linear frequency do-
main solutions (e.g., WAMIT) where only one BEM solution is performed per frequency.
In the traditional BEM, for N degrees of freedom (DOFs), the assembly of a dense system
of linear equations takes both a O(N2) computational effort and computer memory. Com-
bined with a time step ∆t that must be proportional to the grid resolution ∆x (based
on a constant mesh Courant number), BEM approaches for wave models have a CPU
time that is O[(∆x)5], which is a severe limitation for fully nonlinear NWT development.
It can often be sufficient to assume weak nonlinear effects, but this is not accurate for
wave-structure interactions where large amplitude movements are expected, such as when
modeling wave energy converters (WECs). The difficulty in obtaining both a fast (i.e.,
linearly scalable) and accurate BEM solution of Laplace’s equation has led to new ap-
proaches [33], which for moderate-size problems may be promising, even if they do not
achieve the same asymptotic O(N) complexity as, e.g., the fast multipole method (FMM).

A typical solution to this scaling problem has been to develop NWTs based on higher-
order elements, such as the cubic mid-interval interpolation (MII) elements [17, 14], for
which fewer elements are required to achieve the same accuracy [29] ; in this case, the
complexity of a NWT comes from describing the geometry with the smallest number of
DOFs possible. One such higher-order NWT was developed in three-dimensions (3D) by
Grilli et al. [14], following earlier success in two-dimensions [16, 17] (2D), and has been
used to model many wave phenomena, including landslide-generated tsunami [18], rogue
waves [11], and the initiation of wave breaking over slopes [20]. Grilli et al.’s 2D-NWT
was extended by Guerber et al. [19] to handle floating bodies, but the MII elements used
in the NWT, while quite accurate, required a structured grid, which is difficult to apply
to 3D surface-piercing bodies of complex geometry, such as ships, offshore structures, and
WECs. Like most traditional BEM codes that are O(N2), Grilli et al.’s NWT becomes
computationally inefficient for large grids, particularly in 3D. To overcome this limitation,
Fochesato and Dias [10] implemented a FMM in the model (single CPU implementation),
which theoretically provides a nearly O(N) complexity, and Sung and Grilli [34, 35, 36]
verified this performance beyond a few thousand DOFs for ship hydrodynamics problems.
More recently, Nimmala et al. [31] extended the 3D-NWT with FMM to parallel com-
putations, but due to complex details of the model algorithm the method could only be
implemented on small shared memory clusters, whereas it is necessary to use distribu-
ted memory to best utilize large modern computer clusters. The FMM itself, however,
pioneered by Greengard and Rokhlin [13], can be run on such large parallel computer
architectures (see Yokota [38] for a recent review).

Here, we report on the implementation of the ExaFMM [39] in Grilli et al.’s 3D-NWT,
using unstructured triangular grids to model interactions of waves with surface-piercing
bodies. ExaFMM is one of the fastest FMM codes available today, which has been tested
for billions of DOFs. Initial applications of this NWT have demonstrated its ability to
predict nonlinear wave-induced forces on submerged bodies [27], and the favorable scaling
of the FMM for large grids [21]. Here, we attempt to establish the NWT computational
performance for wave interactions with surface-piercing bodies relative to existing, well
validated approaches.

II – Methodology

In an incompressible fluid domain, D, if we assume inviscid and irrotational flow,
then we can posit a velocity potential, φ, such that it satisfies Laplace’s equation, and its

2



gradient is the fluid velocity, u :

∇2φ = 0 (1)

u = ∇φ (2)

at all times for all points in the domain. We also note that on the free surface :

Dφ

Dt
= −gz +

1

2
∇φ · ∇φ+ pa (3)

with the atmospheric pressure pa assumed to be 0. These equations can be solved using
a time stepping method with the MEL formalism of [30], in which Laplace’s equation is
expressed in an Eulerian coordinate system and the free surface and other moving parts
of the boundary are then advected following fluid particle motions. The MEL can create
multiple-valued free surface elevations, corresponding to overturning waves [20] ; here, to
prevent this situation from occurring, which terminates simulations upon complete folding
of the free surface, a semi-Lagrangian approach is used, in which free surface elevation
is vertically adjusted, and fixed vertical boundaries are regridded at each time step to
enforce evenly spaced elements and prevent poorly conditioned elements from occurring.

II – 1 Time integration

Here, following the developments of [14], in the tradition of Dold and Peregrine [6],
we use an explicit 2nd-order Taylor series expansion to advance the free-surface variables
(i.e., elevation and potential) in time. This requires first solving :

∇2φ = 0 (4)

Dx

Dt
= u = ∇φ (5)

Dφ

Dt
= −gz +

1

2
∇φ · ∇φ (6)

for the 1st-order terms, and then, using the same discretization, solving a second Laplace’s
equation for the 2nd-order terms :

∇2φt = 0 (7)

D2x

Dt2
= ∇φt +∇(

1

2
∇φ · ∇φ) (8)

D2φ

Dt2
= −gw + u · Du

Dt
(9)

which, combined, yields :

x(t+ ∆t) = x(t) + ∆t
Dx

Dt
(t) +

(∆t)2

2

D2x

Dt2
(t) (10)

φ(t+ ∆t) = φ(t) + ∆t
Dφ

Dt
(t) +

(∆t)2

2

D2φ

Dt2
(t) (11)

This time stepping scheme has the advantage of making direct use of φt, which for many
applications is also needed for computing hydrodynamic forces applied on the body surface
anyway.
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Figure 1 – Typical octree-structure of a NWT computational domain, in the case of so-
litary wave propagation. For neighboring cells, BEM integrals/interactions are computed
using the free space Green’s function ; for distant cells, integrals are computed through
multipole expansions, saving computational effort.

II – 2 Solution of Laplace equation

We can rewrite Eq. 1 using Green’s second identity as :

α(xi)φ(xi) =

∫ {
∂φ

∂n
(x)G(x,xi)− φ(x)

∂G

∂n
(x,xi)

}
dΓ(x) (12)

where α is the solid angle at collocation point xl on the domain boundary (e.g., 2π for a
smooth boundary) and G the 3D free space Green’s function of Laplace’s equation :

G(x,xi) =
1

4π|ri|
(13)

∂G

∂n
(x,xi) = − 1

4π

ri · n
|ri|3

(14)

where ri = x−xi, is the distance to x also a point on the boundary, and n is the direction
of the outward normal vector to the boundary.

In the collocation method, the Boundary Integral Equation (BIE), Eq. 12, is expressed
for a series of points xi defined as a grid over the domain boundary ; the latter being
discretized in between those points by boundary elements, Γj. The BIE thus becomes a
sum of integrals over each boundary element. For first-order triangular elements, regular
integrations are performed using the Dunavant’s [8] numerical quadrature rules, based on
Nintg integration points ; singular integrals, which occur when integrating over the element
containing a collocation node, are computed analytically. For additional details of the
3D-MII element model, see Grilli et al. [14]. We see from this BIE representation that,
if we ignore singular integrals (which while critical for accuracy are not computationally
time consuming), we are computing integrals representing “interactions” between pairs
of collocation nodes (among N nodes), as a sum of values evaluated at Nintg integration
points (Fig. 1). In the case of the 3D-MII model, each collocation node affects the velocity
potential and flux on 16 adjacent elements, and generally Nintg = 100 integration points
are used per element, so we expect 1600N2 evaluations of the BIE kernel are required to
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assemble the algebraic system matrix. The iterative solution of this system also having a
N2 complexity, overall, we thus expect the complexity of the NWT solution for one time
step to be O(N2).
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Figure 2 – Computational time of various n-body problems using 3D-MII code (•) and
the equivalent direct (without FMM algorithm) computational effort with ExaFMM (◦) :
(a) CPU time for BIE system matrix assembling using Grilli et al.’s [14] NWT as a
function of problem size N ; (b) Effective floating point operations, in GFLOPS, for the
same problems – note that the maximum performance for one core of the hardware used
here, an Intel Xeon E5620, is 9.6 GFLOPS.

While, particularly with modern computer architectures, we cannot expect to achieve
the theoretical peak performance of a processor (see, e.g., Arora et al. [1] for explanations
of some of the reasons), we can use the latter to see the computational efficiency of the 3D-
MII code (Fig. 2). To do this, as in Grilli et al. [14], we propagate a solitary wave of large
amplitude H/h = 0.6 over constant depth, and consider the average CPU time required
for one time step versus the number of collocation nodes N , and we obtain the expected
O(N2) complexity (in order to make the complexity more clear, adaptive integration,
typically used near edges and corners in the NWT [14] was turned off). Assuming that
20 FLOPS are required for each evaluation of one interaction at one integration point, we
can then compare the speed of the computation with the peak theoretical performance
of the processor, and we see that we obtain about a 50% efficiency of the NWT for
single core computations. In order to compare this with a dedicated n-body solver, to get
a sense of whether this is a good result, we computed the interactions between 1600N
source points and N target points, directly (not using the FMM capabilities), using the
optimized ExaFMM library, and obtained effectively the same CPU time and efficiency
(Fig. 2).

From this, we can see that the 3D-MII NWT is extremely efficient at assembling the
system matrix, but also that if we wanted to significantly increase the size (N and hence
NWT resolution for a given problem) of the NWT domain over what can be reasonably
handled on a single core (i.e., a few thousand nodes), even if it were possible to perfectly
distribute the computational load over multiple processors, the N2 overall complexity of
the solution would rapidly require using the largest computers possible.
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Figure 3 – Computational time of various n-body problems applied to the solitary wave
domain (Fig. 1) : (a) CPU time for BIE system matrix assembling, using DPMTA,
ExaFMM, and a direct computation using ExaFMM ; (b) CPU time scaling for fixed
number of nodes N = 106, with increasing numbers of processors, using ExaFMM (cal-
culations were done on a BlueGene/Q computer). Note that one processor of a BlueGene
computer contains 16 computational cores, so this plot shows strong scaling to 4096 cores.

II – 3 Fast multipole method

The fast multipole method (FMM) is a tree-based algorithm (e.g., so-called octree in
3D ; Fig. 1) whereby, taking into consideration the 1/ri behavior of the free space Green’s
function, the BIE interaction values between collocation points depends on the physi-
cal distance between them : interactions for nearby points are computed directly (using
G) and those for distant points are computed through a multipole expansion (typically
based on a Taylor’s series or spherical harmonics, but there are many variations to the
technique) ; in practice, beyond a cut-off distance depending on the number of terms in
the expansion, interactions will be assumed to be negligible (i.e., zero). Hence, for large
problems (N), the evaluation of all resulting interactions can be computed with a nearly
O(N) complexity. However, to solve the BEM with an iterative approach, even for a very
sparse matrix, the number of iterations may increase with problem size, thus causing
the overall complexity of the NWT solution to be higher ; using FMM, we previously
found [21] O(N1.3), which is consistent with other published FMM-BEM results.

As the use of the FMM introduces many complexities to the NWT, we first evaluated
many existing FMM libraries, as there are many subtle differences between algorithms,
which may affect overall computational speed. Yokota [38] performed such a comparison,
testing many open source libraries on the same processor to get three digits of accuracy
for the force of interacting particles randomly distributed in a cube. However, we have
different requirements for accuracy and distribution of nodes, which may have an impact
on performance (which was to some extent explored in earlier work [21]). This makes it
necessary to reevaluate differences in speed using different FMM, when solving the same
problem on the same computer in the NWT. Since Fochesato and Dias [10] had already
implemented the FMM using the PMTA library [3] (v4.0, from 1994) in Grilli et al.’s [14]
NWT, we will also test this library in the current NWT. Note, PMTA later evolved into
DPMTA [32], which was used by Borgarino et al. [4] for other wave modeling problems
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(using AQUAPLUS), but to our knowledge the library is no longer being developed. This
will be compared with the ExaFMM, which we found in earlier work [21] to be the fastest
among a group of other libraries.

Thus, in Fig. 2a, we see that ExaFMM is faster than DPTMA by nearly a factor of
10, while both libraries have the same O(N) complexity, which contrast with the O(N2)
complexity of the Direct method. We then solved the same problem with ExaFMM, using
a fixed number of nodes N = 106 and an increasing number of processors/cores, up to
4,096 cores, on a BlueGene/Q system ; Fig. 2b shows that we obtain a nearly perfect
linear scaling of CPU time speed-up. Each test case must be adapted to the computer
architecture, however – for example, parallel performance on a BlueGene/Q machine is
obtained using MPI, while on a single workstation, the multiple cores available are used
by one of various threading tools, and MPI performance is not as good.

The next step in achieving such overall performance in the BEM-NWT is to relate
the solution of Laplace’s equation to the n-body problem, thus making it possible to
benefit from the latest advancements in algorithms of the well established FMM field ;
for instance, the 2012 Gordon-Bell prize winning paper was for a trillion particle n-body
simulation [22], the largest such simulation achieved at the time. A collocation problem, as
said, however, does not correspond precisely to a n-body problem, but O(1012) integration
points would correspond to O(109) collocation nodes ; when then considering that O(102)
iterations are necessary to converge to a solution of Laplace’s equation, we could consider
that this method could, when fully developed, scale to O(107 − 108) collocation points.
That said, before using such massive computational resources, it is important to ensure
that they are being used efficiently, which we consider in the next section.

II – 4 Computation of derivatives

The BEM collocation method solution provides both the velocity potential and its
normal derivative on the computational domain boundary grid, at each time step. Ho-
wever, this is not sufficient to advance the solution in time using the 2nd-order Taylor
series expansions. For this, we also need to compute higher-order tangential derivatives,
which correspond to the tangential velocity and acceleration along the boundary, parti-
cularly the free surface and moving surface piercing bodies. So, the accurate computation
of such derivatives is equally important to the solution as that of the BEM solution. For
the 3D-MII technique, a 4th order polynomial fit to a sliding grid of 5x5 nodes was used,
as detailed in Grilli et al. [14] and Fochesato et al. [12]. While the 3D-MII demonstrated
exceptional accuracy for propagating a solitary wave and computing its overturning over
a slope [20], to assess the new implementation of an unstructured mesh in the NWT for
more realistic sea states, we should consider periodic waves with realistic tank dimensions
and resolutions.

We first assess the solution’s accuracy independently from time-stepping, by applying
Dirichlet-Neumann boundary conditions for a test function Φ over a domain, solving for
Φn on the free-surface, and considering the maximum relative error in the computed
particle velocity. Thus, in Fig. 4, for various element models, we plotted the accuracy
of the NWT solution for a box-shape domain (similar to Sung and Grilli [34, 36] or
Shao and Faltinsen [33]), with dimensions 5λ × λ × λ/2, for length, depth and width,
respectively. when specifying an analytical wave-like potential on the free surface, Φ =
cos[(2π/λ)x] exp[(2π/λ)z]. We considered different discretizations N , and for each com-
puted the accuracy in the velocity on the free surface.

We first see in Fig. 4a that, for the earlier 3D-MII cubic elements (with 4th-order
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Figure 4 – Relative error in velocity on the free-surface, in the solution with Grilli et
al. [14] NWT of an idealized Dirichlet-Neumann problem on a computational box, using
an unstructured grid and an FMM-accelerated BEM, as a function of : (a) mesh size N :
(b) CPU time. Only one time step is considered here and we compare the solution with
standard 3D-MII cubic elements and 4th-order sliding derivatives, to that for an unstruc-
tured grid with linear triangular elements (Discrete and LSF method of derivatives).

sliding derivatives), we obtain the expected O(N2) convergence of the solution (as δx is
proportional to N2). Then, for an unstructured triangular grid, Fig. 5 shows the neigh-
borhood of a collocation node. Considering element Tijk, whose vertices are denoted by
xi, xj, and xk, for linear shape functions, we can first express the velocity, i.e., the gra-
dient of the potential, locally over Tijk, as a sum of finite difference approximations over
neighboring elements, weighted by the area of each element :

∇φTijk =
1

2A(Tijk)
((φj − φi)(xi − xk)

⊥ + (φk − φi)(xj − xi)
⊥) (15)

where A(Tijk) is the area of the triangular element Tijk. Vector (xi−xk)
⊥ corresponds to

the rotation of vector xi − xk by an angle of π
2

in the direct sense. This is referred to as
“Discrete” method in Fig. 4a, and we see a fairly poor convergence of errors, O(N0.5) or
so. Finally, we compute derivatives based on a least-squares fit (LSF). Given some values
of the velocity potential and its normal derivative at nearby points, it is possible to fit a
Taylor series expansion of this potential. The FMM already makes use of such a division
for points in the neighboring volume and those that are far away, to compute such a series
expansion. In order to enforce the condition that the resulting expression be harmonic, we
use a 8th-order spherical harmonics fit to computed values at collocation nodes considered
to be “local” in the FMM expansion. Fig. 4a shows a substantial improvement in accuracy,
with a O(N) convergence or so of the velocity, using the same linear element mesh as for
the Discrete method.

A more interesting comparison than just error versus grid size is that of Fig. 4b,
showing the CPU time of each model solution, for the grid and size required to achieve
a given error in Fig. 4a. While the 3D-MII NWT converges much faster with N to the
analytical solution, in terms of CPU time, however, the effort required to achieve a given
error is quite similar to that of the unstructured linear triangular mesh with the LSF
method. With higher-order boundary elements (e.g., splines), it might thus be possible to
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Figure 5 – Sketch of triangular element mesh Tijk, also called the 1-ring neighborhood
of the vertex xi.

surpass the 3D-MII performance on an unstructured grid.

III – Application to wave-structure interaction

Next, we compute wave interactions with a surface-piercing cylinder of radius R and
draft D (Fig. 6), for the same problem setup as Liu et al. [28] (D/R = 3). They considered
a truncated vertical cylinder in deep water, and compared their fully nonlinear BEM
results to experimental results [25], frequency-domain computations [23], and small-body
asymptotic theory of Faltinsen et al. [9]. Such a case is of particular interest because of the
third-order ringing forces that can be important for offshore structures. We force the NWT
with the kinematics of a theoretical periodic wave solution along a (leftward) wavemaker
boundary. In order to reduce effects of reflection from the (rightward) end wall, similar
to earlier work in two dimensions [15, 7], as in [2], we specify absorbing beaches (AB)
by adding a dissipative term into the free surface boundary conditions, over an arbitrary
length denoted by lAB. For the dynamic boundary condition, this term here reads :

Dφ

Dt
= −gz +

1

2
∇φ · ∇φ− ν(x)φ (16)

(a) (b)

Figure 6 – Snapshot of free-surface vertical acceleration, showing incoming and diffracted
waves around a surface piercing cylinder of radiusR and draftD (D/R = 3 and kR = 0.22,
for k = 2π/L ; wavelength L) : (a) full-domain ; (b) close-up.
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In addition, an equivalent term is introduced into the kinematic boundary condition which,
for a semi-Lagrangian scheme, is expressed as :

Dz

Dt
= w − ν(x)z (17)

with the vertical particle velocity w = φz and the damping term ν(x) being defined in
terms of the coordinates x in the longitudinal direction as (for x ≥ xAB) :

ν(x) = ω

(
x− xAB
lAB

)2

(18)

and otherwise ν = 0. In a similar fashion, we also control the free surface profile in front
of the wavemaker by substituting in the previous equations, φ for φ− φe, and z − ze, φe
and ze corresponding to an Airy wave (this reference solution could easily be replaced by
a nonlinear wave theory, but for the case presented here the incoming wave is of small
amplitude).

Result Method |f (1)|/(ρgR3) |f (2)|/(ρgR3)

Experiments Krokstad and Stansberg [25] 13.64 10.85
Second order BEM Liu et al. [28] 13.41 12.97
Second-order freq. domain Kim and Yue [23] 13.28 14.86
Small-body asympt. theory Faltinsen et al. [9] 13.93 16.64

Present NWT BEM (1st order elem.) 13.406 7.397

Table 1 – First and second order forces computed for a truncated vertical cylinder with
D/R = 3, and kR = 0.22.

We consider a grid of N = 8591 collocation nodes (17194 elements), with 18 points
around the waterline of the cylinder, and simulate 8 wave periods. The first-order force
coefficient is easily computed (Fig. 7), which we see gives results identical to Liu et al. and
is within the range of other results listed in Table 1. The agreement with the second-order
force is less good, but there is considerable variation in earlier published results .

IV – Summary

We showed results of a new implementation of a FMM-accelerated BEM-NWT for
wave-structure interactions, giving solution times competitive with existing methods. This
approach solves in the time-domain for fully nonlinear potential flow, on unstructured 3D
grids with linear triangular elements. If we compare the performance of this NWT with
that of Grilli et al. [14], as expected, we see that the earlier NWT, which is higher-order,
achieves better conservation of energy and volume, but it does not scale well in CPU
time/numerical complexity, beyond a few thousand DOFs. By contrast the present NWT
has the potential for achieving similarly accurate results with O(N) scaling.

Further modifications of the present unstructured grid code are necessary to use higher-
order elements. Still, we clearly see that the FMM is very efficient for solving Laplace’s
equation, and it is possible to use it with limited modification the established library
ExaFMM [39]. Additional results, with finer grid resolution, and demonstrating the pa-
rallel performance of the complete NWT, will be shown at the conference.
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Fig.6), with the dotted line showing the magnitude predicted by Liu et al. [28], showing
the rapid convergence to a periodic solution.
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